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Summary. The internally contracted multiconfiguration-reference configuration 
interaction (CMRCI) method and several non-variational variants of this 
method (averaged coupled pair approximation (ACPF), quasidegenerate varia- 
tional perturbation theory (QD-VPT), linearized coupled pair many electron 
theory (LCPMET)) have been employed to compute potential energy functions 
and other properties for a number of diatomic molecules (Fz, 02, N2, CN, CO) 
using large basis sets and full valence CASSCF reference wavefunctions. In most 
cases the variational CMRCI wavefunctions yield more accurate spectroscopic 
constants than any of the employed non-variational methods. Several basis sets 
are compared for the N2 molecule. It is found that atomic natural orbital (ANO) 
contractions led to significant errors in the computed re, (De, and De values. 

Key words: Variational - Non-variational - Configuration interaction - Di- 
atomic molecules 

1. Introduction 

Today, the multiconfiguration-reference configuration interaction method [ 1-11] 
(MRCI) is considered to be one of the most accurate approximations used in 
quantum chemistry. The main advantage of this method is that it is not restricted 
to specific choices of the zeroth order wavefunction and can therefore be used to 
compute potential energy functions and other molecular properties for ground 
and excited electronic states and for any nuclear geometry. A considerable 
number of benchmark calculations [ 12-21] have demonstrated that second-order 
MRCI wavefunctions, which include all single and double excitations out of full 
valence complete active space self-consistent field (CASSCF) reference wavefunc- 
tions, yield potential energy functions which more closely parallel the full CI 
(FCI) functions than any other approximate method tested. However, these 
benchmark calculations were performed with quite small orbital basis sets and 
therefore give no information about the absolute accuracy which can be 
achieved. Even though many previous applications of the MRC! method have 
shown that excellent agreement with experimental results can be obtained when 
large AO (atomic orbital) basis sets are used, it is difficult to draw general 
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conclusions, since a large variety of basis sets and many specific choices of 
reference wavefunctions were employed. A systematic investigation of the effect 
of different selections of reference configurations was often prevented by the fact 
that the computational effort of the MRCI method strongly increases with the 
number of reference configurations. In many cases this made the simultaneous 
use of large basis sets and large reference spaces impossible. 

This situation has changed with the development of the internally contracted 
MRCI method [8-11]. In this method the total wavefunction is a linear 
combination of the same set of configuration state functions (CSFs) as in an 
uncontracted calculation, but the number of variational parameters is strongly 
reduced by contracting subsets of the CSFs with fixed coefficients. For a given 
basis set, the number of variational parameters only depends on the number of 
correlated orbitals in the reference wavefunction; it is independent of the number 
of reference configurations which are constructed from this orbital set. It has 
been demonstrated [9, 10] that in most cases this contraction leads to only very 
small errors. Some results of benchmark calculations [ 10] are shown in Fig. 1. It 
is seen that the energy differences between internally contracted MRCI and 
uncontracted MRCI calculations are typically 30% of the difference between the 
uncontracted MRCI and the FCI. The absolute deviations are of the order of 
only 1 mH. 

The price one has to pay for the reduction of the number of variational 
parameters is the complicated structure of the contracted N-electron basis 
functions. This complicates the calculation of the Hamiltonian matrix or, in a 
direct CI procedure, the evaluation of the residual vector g = H"  c. However, we 
have recently developed very efficient new techniques which now enable us to 
perform internally contracted MRCI calculations with very large reference 
spaces and very large basis sets. Some of our previous calculations [ 10] included 
more than 3000 reference configurations with basis sets of more than 150 orbitals 
and were equivalent to uncontracted MRCI calculations with about 108 configu- 
ration state functions. 

In the present paper we first review some aspects of the internally contracted 
MRCI method and then present applications to the molecules F2, 02, N2, CN, 
and CO. The aim of these calculations was to systematically compare the 
quality of calculated spectroscopic quantities for open and closed-shell molecules 
with single, double, and triple bonds. We have tried to make these calcula- 
tions as well defined and equally based as possible. In all cases, full-valence 
CASSCF reference wavefunctions without any further configuration selection 
were used. In the special case of F2 we also performed calculations which 
included the 2nu and 2% orbitals into the active space of the reference function. 
We have employed the largest standard basis sets available (13s8p3d2flg 
contracted to [6s5p3d2flg]). In the ease of N 2 some additional calculations have 
been performed with other s, p basis sets. 

A disadvantage of the MRCI method is that is it not size consistent. Therefore, 
various non-variational modifications have been proposed, which are at least 
approximately size consistent. Most of these procedures are considered as 
approximations to a general MR-coupled cluster (CC) theory [22]. The simplest 
ones are the linearized CC method (MR-LCC) of Laidig and Bartlett [23, 24], the 
averaged coupled pair approximation (ACPF) of Gdanitz and Ahlrichs [25], the 
variational perturbation theory [26] (VPT, equivalent to the linear coupled 
electron pair approximation, CEPA(0)), and the quasidegenerate variational 
perturbation theory [27] (QDVPT) of Cave and Davidson. A somewhat more 
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Fig. 1. Comparison of total energies of internally contracted ((3) and uncontracted (@) MRCI 
calculations. The energy differences between these and the full CI results are shown 

elaborate approximate MR-CC method has recently been proposed by 
Hoffmann and Simons [28]. This method is closely related to the internally 
contracted CI method, and our techniques should therefore be well suited for an 
efficient implementation of this method. 

So far, little systematic information is available about the quality of results 
obtained with the above mentioned non-variational methods. In addition to the 
variational MRCI calculations, we have therefore performed CEPA(0), ACPF, 
and QDVPT calculations using the same basis sets and CASSCF reference wave- 
functions. Perhaps somewhat surprisingly, we find that all non-variational meth- 
ods yield substantially worse agreement with experimental data than the varia- 
tional MRCI method. 

The present article is organized as follows: in Sect. 2 we review the relevant 
aspects of the internally contracted CI method. In Sect. 3 we discuss various 
non-variational modifications. In Sect. 4 the results of the calculations for the 
electronic ground states of F2,  O2,  N2,  CO and CN are presented. A short 
summary is given in Sect. 5. 

2. Uncontraeted and internally contracted N-electron basis sets 

Configuration state functions (CSFs) are defined by specifying the occupation 
number of each orbital (0, 1 or 2) and the spin coupling of the singly occupied 
orbitals. The number of possible spin couplings depends on the total spin 
quantum number and the number of singly occupied orbitals. A specific choice 
of occupation numbers irrespective of the spin coupling is called "orbital 
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configuration". We denote orbital configurations by capital letters/, J , . . .  and 
spin couplings by Greek letters p, v . . . . .  

It is convenient to classify the configurations according to the number of 
electrons in the "internal" or "external" orbitals. Internal orbitals are those 

tha t  are occupied in at least one reference configuration, and are denoted by 
indices i,j, k, I. The complementary space of external orbitals is denoted by the 
indices a, b, c, d and arbitrary orbitals by the letters r, s, t, u. We distinguish 
internal CSFs ~,r~,, singly external CSFs ~ ,  and doubly external CSFs ~abeu. 
Here, I denotes an orbital configuration with N electrons in the internal orbital 
space, S denotes an orbital configuration with N -  1 electrons in the internal 
space, and P an orbital configuration with N -  2 electrons in internal orbitals. 
Configurations with more than two electrons in external orbitals are neglected. 
The N -  2 electron orbital configuration space P is generated by performing 
all possible annihilations of two electrons from the set of reference configura- 
tions R. The N - 1 electron orbital configurations S are then obtained from the 
set P by adding in all possible ways one electron to unfilled internal orbitals. 
Similarly, the internal configuration set I is generated by adding one internal 
electron to the configurations S. In general, the reference configurations R form 
a subset of the internal configurations L For complete active space reference 
functions, the internal configuration space is identical to the reference configura- 
tion space. 

Using these definitions an uncontracted MRCI wavefunction can be written 

a s  

ll~ S# a Plz ab 

The disadvantage of this ansatz is that the number of internal orbital configura- 
tions S and P depends strongly on the number of reference configurations. In 
direct MRCI procedures, the computational effort depends most crucially on the 
number of N -  2 electron functions (P#). If this number is denoted Ne, the 
number of operations per iteration is proportional to N p N  4 + N ~ N  3, where N is 
the number of external orbitals and 1 ~< x ~< 2. This is the reason for the fact that 
it is difficult to perform uncontracted MRCI calculations with large reference 
configuration spaces and large basis sets. 

For the uncontracted MRCI wavefunction, the configuration space was 
generated by two electron excitations from each individual reference configura- 
tion. In contrast, in the internally contracted MRCI, the configurations are 
generated by applying two-electron excitation operators E,i,,y to the complete 
reference function 

~0 = ~ aRU~R,. (2) 
R,u 

In the following, we use the short-hand notation 10)-  ~u o. The internally 
contracted configurations are defined as 

= = ( E r l E s j  - ( i  >/j, all r, s), (3) 

where/~, and Eri,sj are one- and two-electron excitation operators, respectively: 

Er i ,  sj ~-- E r i E s j  - -  ~ i s E r j  • ( 5 )  
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For a given internal orbital space, the number of contracted configurations ¢i~s 
is independent of the number of reference configurations. However, the functions 
~ s  are not orthonormal and may be linearly dependent. In order to eliminate 
redundant functions and to orthonormalize the remaining set, we need their 
overlap matrix. Clearly, functions with different numbers of external orbitals are 
automatically orthogonal. For the doubly external configurations ~,~b, the 
overlap is given by 

< ¢~ ~jb I ~ ~d > = 6 ac(~bd < Ol~ik,jl l0 > .4_ (~ad(~bc < OlJ~il, jk 10>. (6) 

It is convenient to redefine the doubly external functions such that the external 
orbitals are either singlet (p = 1) or triplet (p = - 1 )  coupled 

~ijp = l ( ~ b  +p~ba) (i >~j, a >~b,p = ___1), (7) 

since then the internal and external parts in Eq. (6) factorize, and singlet and 
triplet pairs are orthogonal: 

< ~jb  I~)~dq > ~_. l ~pq(~act~b d Jr ~ad~bc) < OIJEik,j l "[- Pff~il, jk [0>. (8) 

In order to orthonormalize the functions ~ only the internal overlap matrices 
S~P~t (p = _ 1) are needed: 

S~P2~ = <01J~,.k,j. ~ 10> +p<0lJ~et.y k 10>. (9) 

These are given by the elements of the second-order reduced density matrix 
o f  the reference wavefunction. In principle, internally contracted singly 
external configurations ~ka and internal configurations ~,~/can be defined in a 
similar way. This has in fact been done in the first implementation of the 
internally contracted MRCI method by Werner and Reinsch [8]. However, 
in order to orthonormalize these functions, the third- and fourth-order 
density matrices, respectively, are needed, and the corresponding overlap 
matrices can become very big. Moreover, it turns out that the calculation of 
the coupling coefficients in the direct CI procedure becomes quite difficult 
if internally contracted internal and singly external functions are used as a basis. 
On the other hand, the contraction of the doubly external configuration 
state functions presents no particular problems and leads to large savings in 
the cost of the calculation. We have therefore adopted a hybrid scheme [10] in 
which the uncontracted configuration spaces ~I/t and ~ ,  and the internally 
contracted doubly external functions ~7 b are used. The wavefunction then takes 
the form 

11~ S# a i>~j p ab 
(lO) 

with 

c~,; = pCg~a. (ll)  

As discussed in detail in [10], the residual vector g = H . c  is most easily 
calculated directly in the basis of the non-orthogonal functions ~ b  (redundant 
functions are eliminated). In order to find a new expansion vector c, the residual 
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vector is transformed to an orthonormal basis ~5~, defined by 

I~aDb = E T(P)  d~ ab ~t D,ij ~ ijp , 

where 

T(p) = (S<p)) 1/2 
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(12) 

(13) 

3. Non-variational MRCI approximations 

In order to achieve approximate size extensivity, Gdanitz and Ahlrichs suggested 
the minimization of the energy functional [25] 

E = E o ~  (~'° + ~c In - E°I~'° + ~'c > (14) 
l "b ga ( ~ a l ~ a > ' q - g e  ( ~ e l ~ e >  ' 

where ~v o is the normalized reference wavefunction (Eq. (2)), ~v is the correla- 
tion function 

~]Yc = ~ -- (~/l~['/0>~/O = ~/a ~- ~/e, (15) 

and ~a and ~v e are the mutually orthogonal internal and external parts of ~c. 
Equation (15)implies (~v I~o) = 0. For our internally contracted MRCI wave- 
function the internal and external correlation functions take the form 

~V a = ~ C/~I~ -- (~VI~0)~0, (16) 

~e "~- E E c S # ~ #  + E E E C / J ~ J  b" (17) 
Sg a i>~j p ab 

In Eq. (14), ga and ge are numerical factors, which in the ACPF method of 
Gdanitz and Ahlrichs are chosen to be [25] 

ga = 1, ge = 2/n, (18) 

where n is the number of electrons correlated. Different choices of ga and ge lead 
to other approximations, e.g., 

ga = 1, ge = 1 

yields the variational MRCI solution, 

ga =0,  ge = 0  

(19) 

(20) 

corresponds to variational perturbation theory [26] (VPT) or CEPA(0), and 

ga  = 1, ge = 0 (21) 

is equivalent to Cave and Davidson's quasi-degenerate variational perturbation 
theory [27] (QDVPT). The multireference linear coupled cluster (MR-LCC) 
method of Laidig and Barlett [23, 24] is similar to VPT and CEPA(0), but does 
not include the orthogonal complement of the reference function in the internal 
space. In the early version [23] of MR-LCC the important semi-internal configu- 
rations were also omitted. 



Configuration interaction calculations 181 

S,u Varying the energy functional (14) with respect to the coefficients c lu, Ca , 
and C~g yields the variational conditions 

0 = ( ~ I u  I H - ea I T )  - alU(E - Eo)(1 - g a ) ( ~ O I T J ) ,  (22) 

0 = ( e ~ ,  IH -- ee 17J), (23) 
ab 0 = <~#p ]H -- 8 e J~.l>, (24) 

where 

5, = Eo + ga(E  - Eo), (25) 

ee = Eo + g e ( E  - Eo). (26) 

and a Iu are the coefficients of the reference wavefunction. In the direct CI 
procedure, these equations are solved iteratively. Since for the non-variational 
methods Eqs. (22)-(26) represent a system of non-linear (ACPF, QDVPT) or 
linear (CEPA(0)) equations, some modifications of the usual Davidson proce- 
dure [29] are necessary. 

While in most previous approximate MRCC methods uncontracted N-elec- 
tron basis sets were used, similar excitation operators and internally contracted 
configurations as those defined in Eq. (3) were employed in the approximate 
linear MRCC method of Hoffmann and Simons [28]. Compared to other linear 
MRCC approximations, Hoffmann and Simons did not neglect some terms 
which involve higher order excitations as intermediate states. However, this 
method was implemented like a conventional (non-direct) CI, and therefore 
allowed only the use of quite small configuration spaces. It appears straight- 
forward to implement their method more efficiently using the same techniques 
[10, 11] as in our internally contracted CI method. 

4. Benchmark calculations for diatomics 

The availability of an efficient implementation of the internally contracted MRCI 
method described in Sect. 2 has opened up the possibility of routinely using large 
CASSCF reference spaces, rather than being forced into the difficult problem of 
selecting a few appropriate reference configurations. In particular, for nearly all 
diatomic molecules, it is now feasible to perform CMRCI calculations which are 
nearly "black box" in nature, using complete valence reference spaces, with large 
standard basis sets. In this section, we present the results of such calculations for 
the series of first row diatomics F2, 02, N2, CN, CO, and compare the resulting 
spectroscopic properties with those derived from experiment. This comparison 
then acts as a benchmark by which we can estimate the reliability of this 
computational ansatz in future studies. The series of molecules chosen gives a 
reasonably comprehensive test, since it spans a range of different bond lengths, 
number of electrons, and degree of multiple bonding. 

For each molecule we have used the largest van Duijneveldt [31] sp basis, 
13s8p, with the innermost 8s, 4p contracted together according to the atomic 
SCF ls orbital. Polarization and angular correlation effects are represented using 
Dunning's [32] 3 d 2 f l g  primitive gaussian set. For the CI calculations, the 
reference space consisted of all configurations obtained by distributing the 
valence electrons amongst those orbitals corresponding to atomic 2s and 2p 
orbitals, giving in most cases several hundred configurations. This choice allows 
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for the 2s correlation effects which are particularly important in N and C, and 
is in general sufficiently flexible to account for most significant non-dynamical 
correlation effects. Amongst the series of molecules studied, the exception is F2, 
where, in order to describe both neutral and anionic character, it is desirable to 
include two sets of p orbitals in the active space. Inclusion of six additional 
orbitals is impractical, and following previous studies [33] we use reference 
spaces which arise from the 2p orbitals together with the 2nu and 2ng orbitals. In 
order to generate reference orbitals for the CI treatment, CASSCF calculations 
with the reference configuration sets were performed with inner shell orbitals 
optimized but not correlated. 

Tables 1-5 give the computed spectroscopic constants for each molecule, 
derived by fitting the calculated energies at ten bond distances to a polynomial 
of eighth degree. The errors in re ,  ~ e ,  and D~ relative to the experimental values 
are shown in Fig. 2. The stability of the spectroscopic constants with respect to 
variations of the fit was carefully checked. In the case of F2, the 2 s 2 p  reference 
results are compared with 2p2n~ and 2p2rc~2ZCg reference results. The agreement 
of the MRCI results with experiment is seen to be significantly superior than that 
of all the non-variational methods for the near equilibrium properties ( re ,  09e, 

etc.). The errors of the CMRCI equilibrium distances vary between 0.001 and 
0.003/k, while the harmonic frequencies are accurate to within 5-10 cm -~. For 
De, it is difficult to draw significant conclusions; here size consistency is an 
important issue, and one expects the non-variational methods to be an improve- 
ment over variational MRCI, but this is not the case for N2, CN and CO. The 
errors in the MRCI dissociation energies amount to about 0.2 eV in all cases. 

For the case of F2, despite the known problem of inadequate simultaneous 
description of F and F - ,  the 2 s 2 p  active space results display an accuracy similar 

Table 1. Calculated a and experimental spectroscopic constants b for F2 (X ~+ ) 

Energy r e B e ote (D e (DeXe D e 

Exp. a 1.4119 0.890 0.0138 916.6 11.2 

MRCI  e - 199.3116873 1.4155 0.886 0.0119 909.75 18.01 

ACPF ~ -199.3430536 1.4158 0.885 0.0113 924.39 17.30 
QDVPT ~ - 199.3494482 1.4161 0.885 0.0112 927.36 17.16 
CEPA(0) e,f -199.3510003 1.4211 0.879 0.0116 911.45 17.70 

MRCI  g - 199.3226396 1.4130 0.889 0.0109 934.43 16.57 

ACPF r,g -199.3469359 1.4167 0.884 0.0112 924.38 17.14 
QDVPT f,g -199.3517274 1.4176 0.883 0.0113 922.12 17.27 

CEPA(0) r,g - 199.3526138 1.4172 0.884 0.0123 925.41 19.59 

MRCI  h - 199.3316887 i 

1.66 

1.46 
1.55 
1.57 

1.65 

1.62 

a For  basis set, see text 

b Be ' ~te, oge, c%xe in c m -  l, re in ~ ,  D e in eV 
c Energy at re 
d [34] 
e 2s2p reference space 
r Because of intruder state problems, no convergence at  large distance 

g 2p2nu reference space 
h 2p2~zu27tg reference space, see text 
i Energy at r = 1.4120 ]k 
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Energy r e B e a~ (D~ (DeXe D~ 

Exp. d 1.2075 1.446 0.0159 1580.2 12.0 5.21 

MRCI -150.1400817 1.2085 1.443 0.0159 1585.3 11.9 5.00 
ACPF -150.1650993 1.2113 1.437 0.0158 1573.8 11.8 5.06 
QDVPT -150.1712708 1.2121 1.435 0.0158 1569.9 11.8 5.08 
CEPA(0)" -150.1721413 1.2130 1.433 0.0159 1564.2 11.8 

a For basis set, see text 
b Be , ~¢, (De, C%Xe in c m -  1, re in A, D~ in eV 

Energy at r e 

d [34] 

No convergence at large distance 

Table 3. Calculated a and experimental spectroscopic constants b for N2 (X l~+ ) 

Energy ~ re Be ~e (D e (DeXe De 

Exp. a 1.0977 1.998 0.0173 2358.6 14.3 9.91 

MRCI - 109.3862961 1.1008 1.987 0.0171 2350.7 13.9 9.72 
ACPF - 109.3984824 1.1016 1.984 0.0172 2343.7 14.0 9.68 
QDVPT - 109.4020138 1.1019 1.983 0.0172 2341.4 14.0 9.66 
CEPA(0) - 109.4021260 1.1020 1.983 0.0172 2340.8 14.0 9.66 

a For basis set, see text 
b Be ' ~te, (De, ~%Xe in c m -  1, re in A, D e in eV 

Energy at r e 
a [341 

Table 4. Calculate& and experimental spectroscopic constants b for CO (X i y +) 

Energy ~ r e Be ore ~o e ¢%xe De 

Exp. d 1.1283 1.931 0.0175 2169.81 13.29 11.36 

MRCI -113.1689381 1.1319 1.919 0.0173 2164.80 13.1 ll.14 
ACPF -113.1811840 1.1330 1.915 0.0173 2156.68 13.1 11.08 
QDVPT - I13.1847670 1.1334 1.914 0.0173 2153.91 13.1 11.06 
CEPA(0) e -- 113.1851947 1.1336 1.914 0.0173 2152.41 13.1 

a For basis set, see text 
b Be , ere, toe, (Dex e in c m -  1, re in A, D e in eV 
c Energy at r e 

d [341 
e No convergence at large distances 
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Table 5. Calculated a and experimental spectroscopic constants b for CN (X 2Z+) 

Energy c r= B e o~ e o)  e (,OeX e D e 

Exp. ~ 1.1718 1.900 0.0174 2068.59 13.09 7.78 
7.89 

MRCI -92.5782757 1.1754 1.888 0.0173 2060.52 13.0 7.70 
ACPF -92.5878526 1.1762 1.886 0.0173 2055.47 13.1 7.67 
QDVPT -92.5910468 1.1765 1.885 0.0173 2053.58 13.1 7,66 

a For basis set, see text 
b B e , % , O g e ,  OgeX e in cm - l ,  r e in A, D e in eV 
c Energy at r e 

[34] 

to that obtained in the other systems. The inclusion of the 2n, orbital (2p2nu 
active space) apparently improves the De and r e values, but actually leads to a 
worse, and overestimating, error in e~ e. The good De value is partly due to a 
compensation of basis set shortcomings and an overestimate of the correlation 
effect. The inclusion of only the 2nu orbital in the reference wavefunction 
improves the calculation at re, but has no effect at large r. For a balanced 
calculation it is therefore necessary to include excitations into the 2~rg orbital in 
the reference wavefunctions as well. In this case it is not possible, however, to use 
a CASSCF wavefunction as reference in the MRCI. To make the MRCI 
calculation tractable, we used a reference consisting of all possible configurations 
in the 2p space, plus all single and double excitations out of this space into the 
2~ru and 2ng orbitals. This resulted in 278 reference CSFs. The orbitals were taken 
from a CASSCF with the 2p, 2nu, 2ng orbitals active (2584 CSFs). The 
dissociation energy obtained in this case ( 1.62 eV) is in fact lower than without 
the 2ng orbitals (1.65 eV). The importance of the 2nu and 2rrg orbitals is 
particularly apparent in the CASSCF dissociation energies. The corresponding 
De values for the 2s2p, 2p, 2p2n~ and 2p2n~2ng active spaces are 0.80eV, 
0.74 eV, 1.68 eV, and 1.51 eV, respectively (all values calculated as difference of 
the energies at 0.706/~ and 20 ,~). 

In order to investigate whether the contraction of the s, p basis set has a 
significant effect on the computed spectroscopic constants and the dissociation 
energy, some additional test calculations were performed for the N 2 molecule. In 
these calculations the orbitals were determined in a CASSCF with only the six 
MOs (molecular orbitals) which correlate with the atomic 2p orbitals active. This 
has virtually no effect on re and ~o e, but gives slightly better total energies and D e 

values (at large distance the CASSCF(10) and CASSCF(6) calculations yield 
identical results). In the MRCI all ten valence electrons were correlated and a 
full valence CI (10 electrons active) was used as reference function. In Table 6 
the results obtained with two different segmented basis sets are compared with 
two ANO (atomic natural orbital) basis sets [35] and with the new generally 
contracted valence quadruple (V4Z) and pentuple (V5Z) basis sets of Dunning 
[32]. In calculations not shown in Table 6, it was found that the larger segmented 
basis set (SEG-86) yields dissociation energy identical to that of the entirely 
contracted basis. The stronger contraction in the SEG-65 basis leads to a slight 
overestimate of De and toe. The generally-contracted V4Z and V5Z basis sets 
yield very similar results to the segmented basis. As expected, the total energies 
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and experimental spectroscopic 
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of  the V4Z and V5Z bases are lower than that o f  the SEG-65 set and almost as 
good as those of  the SEG-86 basis. The A N O  basis sets also yield very good 
total energies. However, the spectroscopic constants obtained with these bases 
show significant errors: For  the ANO-54 basis, r e is 0.0016 ]~ too long, and co e 
7 cm -1 too small. Even more significant is the error in D e. The value for the 
ANO-54 basis is 0.047 eV (1.08 kcal/mole) two low; for the ANO-65 basis set 
the error still amounts  to 0.48 kcal/mole. Contraction errors of  this size are quite 
unacceptable for calculations of  the present accuracy. In a recent M R C I  study, 
Alml6f  et al. [36] addressed the problem of  calculating the dissociation energy of  
N2 with "chemical accuracy". In their best calculation, which employed an 
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Table 6. Calculated a and spectroscopic constants b for N 2 (.¥ l r~-)  for MRCI with different basis sets 

B a s i s  c E(Re) E(oo) r e B e o~ e (D e (DeXe D e 

ANO[54] -109.3907768 -109.03548622 1.1019 1.983 0.0171 2343.8 13.9 9.682 
ANO[65] - 109.3921873 - 109.03542221 1.1008 1.987 0.0171 2347.9 13.9 9.708 

V4Z[54] -109.3897586 -109.03264645 1.1006 1.988 0.0171 2349.6 13.9 9.718 
V5Z[65] -109.3927441 -109.03535487 1.1004 1.989 0.0172 2350.2 13.9 9.725 

SEG-65 - 109.3865110 - 109.02863835 1.1002 1.989 0.0171 2352.5 13,9 9.738 
SEG-86 - 109.3929710 - 109.03545165 1.1003 1.989 0.0172 2350.6 13.9 9.729 

Exp. 1.0977 1.998 0.0173 2358.6 14,3 9.904 

a Spectroscopic constants from polynomial fit of 8th degree to 10 energies (1.6-3.4 au). The orbitals 
were determined in a CASSCF with the 6 p  electrons active. In the MRCI a full valence CI (10 
electrons active) was used as reference function 
bBe,~e,(De,(DeX c in cm -1, r e in /k, D e in eV 
c In all cases uncontracted 3d, ef, lg functions optimized by Dunning are used. The ANO, SEG-65, 
and SEG-86 s, p bases use van Duijneveldt's 13s, 8p primitive functions. In the segmented [65] basis 
the innermost 8s, 4p are contracted. In the SEG-86 basis the innermost 6s, 3p are contracted. The 
latter basis yields a dissociation energy identical to that o f  the entirely uncontracted 13s, 8p basis. 
The ANO contraction coefficients are from natural orbits of  an SDCI for N(4S) with 13s, 8p, 2d, I f  
functions 

ANO-65 basis, the remaining error in D e was about 2.4 kcal/mole, after correct- 
ing for core-valence correlation and the effect of i functions. It appears that a 
significant fraction of this error is due to the ANO contraction of the basis set. 
These findings have led us to perform a more detailed study of basis set and 
correlation effects on the dissociation energy and spectroscopic constants of N2, 
which will be published elsewhere [37]. 

5. Conclusions 

In this paper, we have demonstrated the viability of complete active space 
multireference CI calculations for diatomics, using CMRCI wavefunctions. The 
accuracy of computed potentials appears to be rather consistent over a wide 
range of different systems, and since large reference spaces can be handled rather 
economically, the difficult and potentially dangerous task of selecting reference 
configurations is eliminated. For the N2 molecule it was demonstrated that small 
ANO basis sets lead to quite significant errors in the spectroscopic constants and 
De, while the energy optimized generally-contracted basis sets of Dunning of the 
same size yield excellent agreement with essentially uncontracted basis sets. 

f 
References 

1. Buenker R.I, Peyerimhoff SD (1974) Theor Claim Acta 35:33 
2. Buenker ILl, Peyerimhoff SD, Butscher W (1978) Mol Plays 35:771 
3. Siegbahn PEM (1980) Int J Quantum Chem 18:1229 



Configuration interaction calculations 187 

4. Liu B, Yoshimine M (1981) J Chem Phys 74:612 
5. Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quantum Chem Symp 15:91 
6. Saxe P, Fox DJ, Schaefer III HF, Handy NC (1982) J. Chem Phys 77:5584 
7. Saunders VR, van Lenthe JH (1983) Mol Phys 48:923 
8. Werner H-J, Reinsch EA (1982) J Chem Phys 76:3144 
9. Werner H-J, Reinsch EA (1984) In: Dykstra CE (ed) Advanced theories and computational 

approaches to the electronic structure of molecules. Reidel, Dordrecht 
10. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803 
11. Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514 
12. Bauschlicher CW. Taylor PR, Handy NC, Knowles PJ (1986) J Chem Phys 85:1469 
13. Bauschlicher CW. Taylor PR (1986) J Chem Phys 85:2779 
14. Bauschlicher CW. Taylor PR (1986) J Chem Phys 85:6510 
15. Bauschlicher CW. Langhoff SR, Taylor PR (1987) J Chem Phys 87:387 
16. Bauschlicher CW. Taylor PR (1987) J Chem Phys 86:2844 
17. Bauschlicher CW. Taylor PR (1987) J Chem Phys 86:5600 
18. Bauschlicher CW. Langhoff SR (1987) J Chem Phys 87:4665 
19. Bauschlicher'CW. Langhoff SR (1987) J Chem Phys 87:5595 
20. Langhoff SR, Bauschlicher CW, Taylor PR (1987) J Chem Phys 86:6992 
21. Bauschlicher CW, Taylor PR (1987) J Chem Phys 86:5600 
22. Jeziorski B, Paldus J (1989) J Chem Phys 90:2714 
23. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424 
24. Laidig WD, Saxe P, Bartlett RJ (1987) J Chem Phys 86:887 
25. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413 
26. Cave RJ, Davidson ER (1988) J Chem Phys 88:5770 
27. Cave RJ, Davidson ER (1988) J Chem Phys 89:6798 
28. Hoffmann MR, Simons J (1988) J Chem Phys 88:993 
29. Davidson ER (1975) J Comput Phys 17:87 
30. Malmqvist PA, Roos BO (1989) Chem Phys Lett 155:189 
31. van Duijneveldt FB (1971) IBM Research Report RJ945 
32. Dunning TH (1989) J Chem Phys 90:1007 
33. Langhoff SR, Bauschlicher CW, Taylor PR (1987) Chem Phys Lett 135:543 
34. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold 
35. Alml6f J, Taylor PR (1987) J Chem Phys 86:4070 
36. Almlbf J, Deleeuw BJ, Taylor PR, Bauschlicher CW, Siegbahn PEM (1989) Int J Quantum 

Chem Sympos 23:345 
37. Werner H-J, Knowles PJ (1990) J Chem Phys (submitted for publication) 


